

ADJUSTMENT OF 90TH PERCENTILE TEMPERATURES

Temperature data for LDEQ Station 0910

Data retreived from LDEQ website (http://www.deq.state.la.us/surveillance/wqdata/wqnsites.stm)

L	DEQ 091 WATER TEMP	0		LDEQ 0296 (Bayou Segnette) WATER TEMP					
DATE	(C)	_	DATE	(C)					
12/5/2000	11.13	winter	12/19/2000	11.7	winter				
10/31/2000	24.62	summer	11/14/2000	16.2	winter				
10/3/2000	25.18	summer	10/17/2000	22.3	summer				
9/12/2000	28.48	summer	9/19/2000	26.7	summer				
8/8/2000	31.31	summer	8/22/2000	31.3	summer				
7/11/2000	31.73	summer	7/25/2000	30.0	summer				
6/13/2000	29.14	summer	6/27/2000	28.6	summer				
5/9/2000	27.12	summer	5/23/2000	28.9	summer				
4/11/2000	19.2	winter	4/25/2000	23.6	winter				
3/14/2000	19.42	winter	3/28/2000	22.9	winter				
2/8/2000	12.14	winter	2/22/2000	18.3	winter				
1/11/2000	17.09	winter	1/25/2000	12.5	winter				

SUMMER

Averages for May through October (LTP definition of summer)

28.23 27.97

Difference between stations = 0.26 C

From Previous page, 90th percentile summer temp for Bayou Segnette = 30.89 C

Adjusted 90th percentile temp for Station 0910 = 30.89 + 0.26 = 31.15 C

 ${\sf FILE: R:\ PROJECTS\ 2110-611\ CD_LAKE_CAT\ APP\ U\ 90TH\ PERC\ TEMP\ 90TH\ PERCENTILE\ TEMPS\ 0910.XLS}$

90TH PERCENTILE TEMPERATURES

Bayou Segnette near Westwego, Louisiana (020701 station 0296)

Data retreived from LDEQ website (http://www.deq.state.la.us/surveillance/wqdata/wqnsites.stm)

summer 90th percentile 30.89 interpolated winter 90th percentile 22.74 interpolated

	WATER TEMP				WATER TEMP		
DATE	(C)	Season	Percentile	DATE	(C)	Season	Percentile
8/12/1997	20.69	summer	1.04	1/9/1996	6.85	winter	0.96
10/15/1996		summer	3.13	1/11/1994		winter	2.88
10/11/1994		summer	5.21	12/12/1995	10.82	winter	4.81
10/13/1992	22.05	summer	7.29	2/14/1995	10.94	winter	6.73
5/10/1994	22.31	summer	9.38	3/12/1996	11.61	winter	8.65
10/17/2000	22.33	summer	11.46	12/19/2000	11.66	winter	10.58
10/10/1995	22.36	summer	13.54	2/9/1993	12.02	winter	12.50
6/11/1991	23.00	summer	15.63	1/25/2000	12.46	winter	14.42
10/12/1993	23.20	summer	17.71	2/10/1998	12.91	winter	16.35
5/13/1997	23.99	summer	19.79	11/18/1997	13.00	winter	18.27
10/14/1997	24.60	summer	21.88	2/11/1992	13.20	winter	20.19
5/11/1993	24.71	summer	23.96	1/15/1991	13.30	winter	22.12
5/12/1992	25.41	summer	26.04	1/7/1992	13.31	winter	24.04
7/12/1994	26.05	summer	28.13	2/18/1997	13.40	winter	25.96
9/19/2000	26.73	summer	30.21	1/10/1995	13.58	winter	27.88
5/14/1996	26.87	summer	32.29	12/13/1994	13.59	winter	29.81
6/10/1997	27.50	summer	34.38	12/14/1993	13.66	winter	31.73
6/13/1995	27.53	summer	36.46	2/13/1996	13.90	winter	33.65
5/12/1998	27.76	summer	38.54	3/10/1998	14.48	winter	35.58
8/13/1996	28.04	summer	40.63	12/9/1997	14.71	winter	37.50
9/12/1995	28.05	summer	42.71	12/10/1996	15.16	winter	39.42
9/10/1991	28.10	summer	44.79	11/17/1992	15.41	winter	41.35
9/14/1992	28.27	summer	46.88	1/7/1997	15.68	winter	43.27
7/9/1996	28.30	summer	48.96	11/14/1995	15.81	winter	45.19
8/13/1991	28.60	summer	51.04	11/14/2000	16.17	winter	47.12
6/27/2000	28.61	summer	53.13	12/15/1992	16.26	winter	49.04
9/13/1994	28.62	summer	55.21	4/15/1997	16.28	winter	50.96
9/9/1997	28.76	summer	57.29	1/13/1998	16.39	winter	52.88
5/23/2000	28.91	summer	59.38	2/4/1991	16.70	winter	54.81
6/11/1996	28.97	summer	61.46	3/14/1995	16.74	winter	56.73
5/14/1991	29.00	summer	63.54	12/10/1991	16.95	winter	58.65
9/10/1996	29.01	summer	65.63	3/9/1993	17.26	winter	60.58
6/14/1994	29.03	summer	67.71	3/15/1994	17.45	winter	62.50
8/11/1992	29.12	summer	69.79	2/8/1994	17.94	winter	64.42
7/13/1993	29.15	summer	71.88	1/12/1993	18.26	winter	66.35
9/14/1993	29.17	summer	73.96	2/22/2000	18.29	winter	68.27
7/16/1991	29.30	summer	76.04	3/12/1991	18.30	winter	70.19
8/9/1994	29.33	summer	78.13	11/18/1991	18.59	winter	72.12
6/16/1992		summer	80.21	4/9/1996		winter	74.04
7/25/2000	29.95	summer	82.29	4/7/1992	19.20	winter	75.96

Page 1 of 2 LDEQ Station 0296 Bayou Segnette

7/15/1997	29.95 summer	84.38	11/19/1996	19.67 winter	77.88
8/15/1995	30.19 summer	86.46	4/4/1995	19.83 winter	79.81
7/11/1995	30.69 summer	88.54	11/16/1993	20.26 winter	81.73
8/10/1993	30.97 summer	90.63	3/10/1992	21.08 winter	83.65
8/22/2000	31.29 summer	92.71	11/15/1994	21.41 winter	85.58
10/15/1991	31.48 summer	94.79	3/11/1997	22.41 winter	87.50
7/14/1992	31.61 summer	96.88	4/13/1993	22.70 winter	89.42
6/15/1993	33.55 summer	98.96	4/14/1998	22.83 winter	91.35
			3/28/2000	22.88 winter	93.27
			4/16/1991	23.50 winter	95.19
			4/25/2000	23.57 winter	97.12
			4/12/1994	24.20 winter	99.04

FILE: R:\PROJECTS\2110-611\CD_LAKE_CAT\APP U 90TH PERC TEMP\90TH PERCENTILE TEMPS 0910.XLS

Wind Aided Reaeration for Lake Cataouatche Projection (020303)

Wind Aided Reaeration Coefficient Equation (Eq.3-23 from Rates, Constants, and Kinetics publication)

$$K_{L \text{ with wind}} = K_{L \text{ without wind}} [1+(0.2395V_w^{1.643})]$$

Equation 1

V_w = wind velocity in meters per second

 K_2 = reaeration in 1/day that does not account for wind effects. For Louisiana equation use K_2 = 0.664/D.

D = depth in meters

 $K_L = K_2 * D$ (=oxygen transfer coefficient "a" in model)

Formula to correct wind speed for elevation (obtained from LDEQ):

$$V_{\text{w@ height z}} = V_{\text{w@ height s}}[(z/s)^{0.143}]$$

Equation 2

CALCULATIONS FOR PROJECTION:

Long term average wind speed for August

= 5.9 mph

= 5.1 knots

August was month with lowest average wind speed for summer months (May-Oct)

Source of long term average wind speed : NOAA (2001)

	Average Wind Speed	Speed	Height of Wind Measurement	Calculating	using Eqn 2	K _L without wind	K _L with wind using Eqn 1
Station	(knots)	(m/s)	(m)	K_{L} (m)	(m/s)	(m/day)	(m/day)
New Orleans Intl. Airport	5.1	2.6	10	0.1	1.4	0.664	0.93

FILE: R:\PROJECTS\2110-611\CD_LAKE_CAT\APP V CALC KL (PROJ)\PROJECTION WIND SPEED.XLS

Plot of Projection Model DO

River KM ω 6 Standard - Model 9 7 12 13 0 8 9 (J\gm) OQ 3-2 -6

Predicted DO for Lake Cataouatche Projection

TEXAS WATER COMMISSION WATER QUALITY STREAM MODEL QUAL-TX VERSION 3.3 UPDATED DECEMBER 3, 1990

\$\$\$ DATA TYPE 1 (TITLES AND CONTROL CARDS) \$\$\$

CONTROL TITLES

CARD TYPE

ГА									
UNL-TX projection for Lake Cataouatche, LA 60% reduction in Bayou									
Lake									
for									
QUAL-TX projection for 60% reduction in Bayou									
rojection									
TX p									
QUAL- 60% 1	ECHO	CAPS	INTE	FINA	LOAD	METR	OXXG	OVER	
	YES	NO	NO	YES	YES	YES	YES	YES	
CNTROL01 CNTROL02	CNTROL03	CNTROL04	CNTROL05	CNTROLO6	NTROL07	CNTROLO8	INTROLO9	NTROL10	ENDATA01
ชช	ΰ	บ	ี่	บี	บี	ีย	ິບ	ປັ	园

\$\$\$ DATA TYPE 2 (MODEL OPTIONS) \$\$\$

MODEL OPTION	TEMP	SAL1 CONSERVATIVE MATERIAL I = cond	CONSERVATIVE MATERIAL II	DISS	BIOC	NITR	PHOS	CHLO	MACR	COLI	NONC	
	NO	NO YES	NO	YES	YES	YES	YES	YES	NO	NO	NO	
CARD TYPE	MODOPTO1	MODOPTUZ MODOPT04	MODOPT04	MODOPT05	MODOPTO6	MODOPT07	MODOPT08	MODOPT09	MODOPT10	MODOPT11	MODOPT12	ENDATA02

IN umbos

\$\$\$ DATA TYPE 3 (PROGRAM CONSTANTS) \$\$\$

CARD TYPE PROGRAM	DESCRIPTION OF CONSTANT MAXIMUM ITERATION LIMIT	ИЯ	VALUE 5000.00000
PROGRAM	P RELAXATION COEFFICIENT	u	0.10000
PROGRAM	P ERROR CLOSURE LIMITS	Ħ	0.00500
ENDATA03			

Page 2 of 25

CARD TYPE	RATE CODE		THETA VALUE								
THETA N THETA C THETA C ENDATA04	NH3 DECA BENTHAL ORGN DEC		1.07000 1.02000								
\$\$\$ CONSTANTS	TYPE 5 ((TEMPERATURE DATA)	E DATA) \$\$\$								
CARD TYPE	DESCR1	DESCRIPTION OF C	CONSTANT		VALUE	,					
ENDATA05											
\$\$\$ DATA TYPE	6 (ALGAE CONS	CONSTANTS	\$\$\$ (
CARD TYPE	DESCRIPTION	OF	CONSTANT		VALUE						
LIGHT N HALF P HALF ENDATA06	LIGHT N HALF P HALF	LIGHT SATURATION CONSTANT N HALF SATURATION CONSTANT P HALF SATURATION CONSTANT	CONSTANT N CONSTANT N CONSTANT	l # H	10.00000 0.20000 0.03000						
\$\$\$ DATA TYPE	7 (MACROPHYTE		CONSTANTS) \$\$\$								
CARD TYPE	DESCRIPTION	OF	CONSTANT		VALUE						
ENDATA07											
\$\$\$ DATA TYPE 8 CARD TYPE REACH		(REACH IDENTIFICATION DATA) TD NAME	ation data) \$\$\$		BEGIN	END	ELEM	REACH	ELEMS Pro ord	BEGIN	END
1	j				KW	KM	KM	KM	FEN NOR	NOM	NOM
REACH ID 2 REACH ID 3 REACH ID 3	B1 B2 B3	Bayou Verret #1 Bayou Verret #2 Bayou Verret #3 Lake Cataonatche	ot #1 ot #2 ot #3 atche #1		13.00 TO 11.50 TO 8.50 TO	11.50 8.50 6.30	0.1000	3.00	15 30 22	1 16 6 6	15 45 67
ID OI	L2 L3	Lake Cataouatche Lake Cataouatche			4.90 TO 3.40 TO	3.40	1.5000	1.50	4 6 6	69 70	69 70
REACH ID 7 SNDATA08	L4	Lake Cataou	ataouatche #4			0.00	0.8000	0.80	п	7.1	7.1

\$\$\$ DATA TYPE 4 (TEMPERATURE CORRECTION CONSTANTS FOR RATE COEFFICIENTS) \$\$\$

	DEPTH	"D"
	DEPTH	ئ ئ
IENTS) \$\$\$	VELOCITY	#B#
\$\$\$ DATA TYPE 9 (ADVECTIVE HYDRAULIC COEFFICIENTS) \$\$\$	VELOCITY	"A"
VECTIVE	REACH ID	
TYPE 9 (AL	REAC	
\$\$\$ DATA 1	CARD TYPE	

Mannings "N"	0.000	00000	0.000	0.000	0.000	
DEPTH "E"	0.000	00000	0.000	000.0	0.000	
DEPTH "D"	00000	0000	0.000	0.000	000.0	
DEPTH "C"	2.700	2.100	2.400	2.500	1.800	
VELOCITY "B"	1.000	1.000	1.000	1.000	1.000	
VELOCITY "A"	0.00622000	0.00539000	0.00014200	0.00007300	0.00006580	
ID	B1	B3	L1 L2	1.3	1.4	
REACH	Н С	1 m ·	4° N	9	7	
CARD TYPE	HYDR-1	HYDR-1	HYDR-1 HYDR-1	HYDR-1	HTDR-1 ENDATA09	

\$\$\$ DATA TYPE 10 (DISPERSIVE HYDRAULIC COEFFICIENTS) \$\$\$

DISPERSION "D"	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
DISPERSION "C"	0.000	000.0	0.000	000.0	000.0	000.0	0.000			•
DISPERSION "B"	0.000	000.0	0.000	0.000	0.000	000.0	000.0			4
DISPERSION "A"	0.500	0.500	0.500	2.600	2.600	2.600	2.600		\$\$\$	
TIDAL RANGE	1.00	1.00	1.00	1.00	1.00	1.00	1.00		11 (INITIAL CONDITIONS)	
ΙΩ	B1	B2	B3	17	1.2	L3	L4		TAL C	
REACH	н	7	e	4	Ŋ	9	7		11 (INIT	
CARD TYPE	HYDR-2	ENDATA10	\$\$\$ DATA TYPE							

\$\$\$
CONDITIONS)
(INITIAL
11
TYPE
DATA
\$\$\$

MACRO	0.00	9 6	0.00	00.00	0.00	00.0	
CHL A	8.50	21 00	13.00	5.00	28.00	22.80	
PHOS	0.20	0.21	0.15	0.08	0.02	0.04	
NO3+2	0.05	0.03	0.05	0.05	0.05	0.05	
NH3	0.22	0.23	0.18	0.12	0.13	0.13	
8	2.60	7.80	5.00	6.70	6.70	6.70	
SALIN	0.70	0.00	0.52	0.80	0.99	1.01	
TEMP	31.20	31.20	31.20	31.20	31.20	31.20	
ID	B1	77 10 10	E1	1.2	Г3	1.4	
REACH	н (7 0) 4r	ស	9	7	
CARD TYPE	INITIAL	INLTIAL	INITIAL	INITIAL	INITIAL	INITIAL	ENDATA11

ENDATA15

ANAER	BOD	0.000	0.000						• •	,	-
24	BOD CONV TO SOD I		0.000.0					MACRO RESP	0.00		
	BOD I	0.000	0.000		DENIT RATE	000000000000000000000000000000000000000		MACRO GROW	000000		
AFROR	BOD	0.050 0.050 0.050 0.050	0.050 0.050 0.050		PHOS	0.0025 0.0025 0.0025 0.0000 0.0000 0.0000		ALGAE RESP	0.10 0.10 0.10 0.10 0.10 0.10		
\$\$\$ (S	BKGRND SOD	0.640 0.720 0.720 0.300	0.000		NH3	0.0010 0.0014 0.0010 0.0100 0.0100 0.0125 0.0075		ALGAE GROW	1.35 1.35 1.35 0.80 0.80 0.80		-
COEFFICIENTS)	#2"	000000000000000000000000000000000000000	0.000		NH3 DECA	0.050 0.050 0.050 0.100 0.100 0.100		ALG CONV TO SOD	0.00 0.00 0.00 0.00 0.00 0.00	\$\$\$	NCM CONV TO SOD
вор	K2 "B"	0.000.0000.0000000000000000000000000000	0.000	CIENTS) \$\$\$	ORGN CONV TO NH3 SRCE	1.00	\$\$\$ (SIN	ALGAE SETT	0.50 0.50 0.20 0.20 0.20	DEFFICIENTS)	NCM SETT
SEDIMENT OXYGEN DEMAND,	K2 "A"	0.240 0.280 0.310 0.420	0.390 0.370 0.520	US COEFFI	ORG-N SETT	00.00	COEFFICIENTS)	ALGAE: CHL A	0.060 0.060 0.060 0.060 0.060 0.060	RVATIVE CO	NCM DECAY
TON, SEDIMENT	K2 OPT	નંનંનં		AND PHOSPHORUS COEFFICIENTS)	ORG-N DECA	0.010 0.010 0.010 0.010 0.010 0.010	(ALGAE AND MACROPHYTE	SECCHI DEPTH	11.00	AND NONCONSERVATIVE COEFFICIENTS)	COLIFORM DIE-OFF
12 (REAERAT	REACH ID	1 B1 2 B2 3 B3 B3 L1 L1		13 (NITROGEN	REACH ID	1 B1 2 B2 3 B3 4 L1 5 L1 7 L4	14	REACH ID	1 B1 2 B2 3 B3 4 L1 5 L2 7 L2	15 (COLIFORM	REACH ID
\$\$\$ DATA TYPE	CARD TYPE	COEF-1 COEF-1 COEF-1 COEF-1	COEF-1 COEF-1 COEF-1 ENDATA12	\$\$\$ DATA TYPE	CARD TYPE	COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 COEF-2 COEF-2	\$\$\$ DATA TYPE	CARD TYPE	COEF-3 COEF-3 COEF-3 COEF-3 COEF-3 COEF-3 COEF-3	\$\$\$ DATA TYPE	CARD TYPE

\$\$\$ DATA TYPE 16 (INCREMENTAL DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES) \$\$\$

INFLOW/DIST	
CM-II	
CM-I	
SALIN	
TEMP	
INFLOW	
OUTFLOW	
ID	
REACH	
CARD TYPE	ENDATA16

\$\$\$ DATA TYPE 17 (INCREMENTAL DATA FOR DO, BOD, AND NITROGEN) \$\$\$

CARD TYPE REACH ID DO BOD ORG-N NH3 NO3+2

ENDATA17

\$\$\$ DATA TYPE 18 (INCREMENTAL DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$ NCM COLI CHL A PHOS ID REACH CARD TYPE ENDATA18

00.00 8 NCM COLI 0.40 5.80 3.60 100.00 325.00 750.00 ORG-N \$\$\$ DATA TYPE 19 (NONPOINT SOURCE DATA) \$\$\$ 24.00 66.00 36.00 2000.00 3000.00 13280.00 2880.00 BOD B1 B2 B3 L1 L2 L3 L3 REACH 1064597 CARD TYPE NONPOINT NONPOINT NONPOINT NONPOINT NONPOINT NONPOINT ENDATA19 NONPOINT

\$\$\$ DATA TYPE 20 (HEADWATER FOR FLOW, TEMPERATURE, SALINITY AND CONSERVATIVES) \$\$\$

CM-II	0.000
CM-I	1250.000
SALIN	0.720
TEMP	31.200
FLOW	0.00300
UNIT	0
NAME	Bayou Verret
ELEMENT	1
CARD TYPE	HDWTR-1 ENDATA20

\$\$\$ DATA TYPE 21 (HEADWATER DATA FOR DO, BOD, AND NITROGEN) \$\$\$

NO3+2	0.05
NH3	0.22
QRG-N	1.19
вор	4.03
00	3.20
NAME	Bayou Verret
ELEMENT	Н
CARD TYPE	HDWTR-2 ENDATA21

Page 6 of 25

									N03+2	0.05	1			
				•					% NITRIF	0.00				
						CM-II	0.000		NH3	0.22	000 1000	VES) 444		
NCM	0.00	,			TIVES) \$\$\$	CM-I	995.000 300.000		ORG-N	1.19	e etection of the end	COLLFORM, AND NONCONSERVATIVES)	NCM	0.00
COLI	0.00				CONSERVA	SAL	0.560		% BOD RMVL	0.00	C.	, AND NOR	COLI	0.00
CHL A	12.00				LINITY, AND	TEMP	31.200	\$\$\$	BOD	4.03	**************************************	L, COLLFORM	CHL A	12.00
PHOS	0.20				RATURE, SAJ	FLOW	0.00300	BOD, AND NITROGEN)	00	1.47	13114040	сньокогнувь	PHOS	0.20
NAME	Bayou Verret	ION DATA) \$\$\$	UPSTRM NAME ELEMENT		(WASTELOAD DATA FOR FLOW, TEMPERATURE, SALINITY, AND CONSERVATIVES) \$\$\$	ME	LUMBER CANAL DAVIS POND	(WASTELOAD DATA FOR DO, BOD, AN	NAME	LUMBER CANAL DAVIS POND	CHARACTER COLUMN	LOAD DATA FOR PHOSPHORUS,	NAME	LUMBER CANAL DAVIS POND
ELEMENT	н	\$\$\$ DATA TYPE 23 (JUNCTION DATA)	JUNCTION		PE 24 (WASTE	ELEMENT NAME	68 LUI 68 DAV	25	ELEMENT	89 9		Z6 (WASTE	ELEMENT	68 68 68
CARD TYPE	HDWTR-3 ENDATA22	\$\$\$ DATA TY	CARD TYPE	ENDATA23	\$\$\$ DATA TYPE 24	CARD TYPE	WSTLD-1 WSTLD-1 ENDATA24	\$\$\$ DATA TYPE	CARD TYPE	WSTLD-2 WSTLD-2 ENDATA25		\$\$\$ DATA TYPE	CARD TYPE	WSTLD-3 WSTLD-3 ENDATA26

\$\$\$ DATA TYPE 22 (HEADWATER DATA FOR PHOSPHORUS, CHLOROPHYLL, COLIFORM, AND NONCONSERVATIVES) \$\$\$

Page 7 of 25

\$\$
ŝ
CONDITIONS)
BOUNDARY
(LOWER
27
TYPE
DATA
\$\$\$

												ML		
NO	DEG C	PPT	umhos		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	UG/L	#/100 N		
CONCENTRATION	31.200 DEG C	0.950	1695.000 umhos	0.000	6.460 MG/L	4.180 MG/L	1.010 MG/L	0.130 MG/L	0.050 MG/L	0.060 MG/L	17.500 UG/L	000.0	0.000	
U	Ħ	K	H	It	Н	Ħ	H	If	li	II	Ħ	II	H	
CONSTITUENT	TEMPERATURE	SALINTIY	CONSERVATIVE MATERIAL I	CONSERVATIVE MATERIAL II	DISSOLVED OXYGEN	BIOCHEMICAL OXYGEN DEMAND	ORGANIC NITROGEN	AMMONIA NITROGEN	NITRATE + NITRITE NITROGEN	PHOSPHORUS	CHLOROPHYLL A	COLIFORM	NONCONSERVATIVE MATERIAL	
CARD TYPE	LOWER BC	COWER BC	COWER BC	COWER BC	COWER BC	LOWER BC	JOWER BC	JOWER BC	JOWER BC	COWER BC	JOWER BC	COWER BC	OWER BC	NDATA27

\$\$\$ DATA TYPE 28 (FLOW AUGMENTATION DATA) \$\$\$

ORDER OF AVAIL SOURCES	
TARGET	
AVAIL HDWS	
REACH	
CARD TYPE	ENDATA28

\$\$\$ DATA TYPE 29 (SENSITIVITY ANALYSIS DATA) \$\$\$

the (with designation restriction) of their did bab	***********							
CARD TYPE	PARAMETER	COL 1	COL 2	COL 3	COL 4	COT 2	9 700	COL
ENDATA29								

COL 8

\$\$\$ DATA TYPE 30 (PLOT CONTROL CARDS) \$\$\$

ENDATA30

.....NO ERRORS DETECTED IN INPUT DATA

.....HYDRAULIC CALCULATIONS COMPLETED

.....TRIDIAGONAL MATRIX TERMS INITIALIZED

.....OXYGEN DEPENDENT RATES CONVERGENT IN 1 ITERATIONS

.... PHOTOSYNTHETIC RATES CONVERGENT IN 805 ITERATIONS

.....CONSTITUENT CALCULATIONS COMPLETED

QUAL-TX projection for Lake Cataouatche, LA 60% reduction in Bayou

Bayou Verret Bayou Verret #1

FINAL REPORT REACH NO. 1

***	NCM *	00.00	* * *	MEAN	VELO	M/S	0.000	0.000	0.00	0.000	0.000	000.0	0.000	0.000	000.0	000.0	000.0	000.0	000.0	000.0	000.0			
*********** REACH INPUTS ***********************************	COLI #/100ML	.0	******** HYDRAULIC PARAMETER VALUES ******************************	DISPRSN		SO M/S			0.500												_			
****	CHL A UG/L	12.0	****	TIDAL	VELO	M/S	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0			
****	PHOS MG/L	0.20	***	TIDAL	PRISM	CO M	0	ö	0.				0.		0	0	ö			ö				
***	NO3+2 MG/L	0.05	* * * * * * * * * * * * * * * * * * * *	CT	e.	Σ	8.0	8.	8.	8.	8.	8.	œ.	8.	œ.	8.	œ.	8.	. .	æ.	80.		8.	
***	NH3 MG/L	0.22	* * *	X-SECT	ARE	N OS			160.8								160	160	160	160.8	160		160.8	
*****	ORGN MG/L	1.19	* * * * * * * * * * * * * * * * * * * *	SURFACE	AREA	SQ M	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	5954.5	89317.6		
***	EBOD MG/L	4.03	VALUES **	VOLUME		CO M	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	16077.	241158.		
NPUTS	BOD MG/L	4.03	METER	WIDTH		×	59.5	.5	59.5	s,	٠,	٤.	.5	٤.	s.	٠.	٠,	'n.	'n.	٦,	٠.	2	59.5	
EACH I	DO MG/L	3.20	PARA																					
× * *	CM-II *	0.0	RAULI	DEPTH		X	2.70	2.7	2.70	2.7	2.70	2.7	2.7	2.70	2.7	2.7	2.7	2.7	2.7	2.70	2.70		2.70	
*****	CM-I CP	0.	**** HYD	TRAVEL	TIME	DAYS	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	62.03	930.39	95 050	930.33
* * * * * *		1250.0	* * * * * *	ADVCTV	VELO	S/W	0.000	000.0	0.000	000.0	000.0	0.000	000.0	000.0	000.	000.0	000.0	000.0	000.0	000.0	000.0		000.0	
* * * * * *	SALN	0.72	* * * *		EFF		0.0		0.0					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0	
*****	TEMP DEG C	31.20	*****	FLOW		CMS	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0000	0.0030	0.0030	0.0030	0.0030			
****************	FLOW	0.0030	****************	ENDING	DIST	KIM	12.90		12.70		12.50	12.40	12.30						11.70	11.60	11.50			
*****	TYPE	HDWTR	`* ** * *	BEGIN	DIST	KW	13.00	12.90	12.80	12.70	12.60	12.50	12.40	12.30	12.20	12.10	12.00	11.90	11.80	11.70	11.60			
****	ELEM NO.	1	* * * *	ELEM	NO.		↔	8	m	4	S	9	7	80	თ	10	11	12	13	14	15	TOT	AVG	E COM

25
of
10
Page

NCM 1/DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00	00.00	* * * *	NCM *	0.00	0.00	
NCM DECAY 1/DA 0.00 0.00 0.00 0.00 0.00 0.00	*	****** WATER QUALITY CONSTITUENT VALUES ****************************	COLI #/100ML	00000000	000000	
COLI DECAY 1/DA 1/DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00	00.00	**	MACRO **	0.0000000000000000000000000000000000000	0.00000	
** * * * * * * * * * * * * * * * * * *	0.00	* * * * * * * * * * * * * * * * * * * *	4 H	H H O O O O O O		
ALG PROD ** 0.14 0.13 0.13 0.13 0.13 0.13	0.13 0.13 0.13 0.13	* *	CHL A UG/L	7.7.7.7.7.7.7.0.0.7.7.0.0.0.0.0.0.0.0.0		
* * * * * * * * * * * * * * * * * * *	00.00	* * * *	PHOS MG/L	0.05 0.05 0.05 0.05 0.04 0.04	0.04 0.04 0.04 0.04 0.04	
PENIT RATE 1/DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	00.00	* * * * * * * * * * * * * * * * * * * *	TOTN MG/L	2.24 2.25 2.25 2.26 2.27 2.29 2.30	2.32 2.33 2.33 2.35 2.35 2.41	NCM =
SRCE * SRCE O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.00	δ. * *	NO3+2 MG/L	1.59 1.59 1.60 1.61 1.62 1.63 1.63	1.65 1.65 1.66 1.66 1.67 1.68	Z
NH3 DECAY 1/DA 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0.10 0.10 0.10 0.10 0.10	IT VALUE	NH3 MG/L	0.13 0.13 0.13 0.13 0.13	0.13 0.13 0.13 0.14 0.14	
ORGN SETT 1/DA 0.00 0.00 0.00 0.00 0.00 0.00	0.00	STITUE	ORGN MG/L	0.52 0.52 0.53 0.53 0.53	0.55 0.55 0.56 0.57 0.60	
ORGN 1/DA 1/DA 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	ITY CON	EBOD MG/L	1.30 1.28 1.28 1.28 1.28	1.28 1.29 1.30 1.31 1.32 1.33 1.33	
CORR SOD * * 1.67 1.66 1.66 1.66 1.66 1.66 1.66 1.65 1.65	1.65 1.65 1.65 1.65 1.65	R QUAL	BOD MG/L	1.30 1.28 1.28 1.28 1.28 1.28	1.28 1.29 1.30 1.31 1.32 1.33	
FULL SOD * * * 1.66 1.66 1.66 1.66 1.65 1	1.65 1.65 1.65 1.65	* WATE	DO MG/L N	55.17		II
ANBOD DECAY 1/DA 1/DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00	* * * *	ы			CM-II
CBOD SETT 1/DA 1/DA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	00.00	* * * *	Ω - Σ - Ε			
CBOD DECAY 1/DA 0.08 0.08 0.08 0.08 0.08 0.08	08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09	** MG/L/DAY	CM-I	1603.8 1605.1 1606.4 1607.8 1609.1 1611.8	1614.5 1615.8 1617.2 1618.6 1620.0 1621.3	
REAER RATE 1/DA 0.29 0.29 0.29 0.29 0.29 0.29	00000 0	** MG/	SALN PPT	7.00 7.00 7.00 7.00 7.00 7.00		
SAT D.O. MG/L 7.38 7.38 7.38 7.38 7.38 7.38 7.38		* * * * *	TEMP DEG C	31.20 31.20 31.20 31.20 31.20 31.20	31.20 31.20 31.20 31.20 31.20 31.20	
ENDING DIST 12.900 12.800 12.700 12.600 12.500 12.400 12.200 12.100	11.900 7.3 11.800 7.3 11.700 7.3 11.600 7.3 11.500 7.3 11.50 7.3	* G/SQ M/D	ENDING	12.900 12.800 12.700 12.600 12.500 12.300 12.200	100 000 900 800 700 600	= cond umhos I M
	20 20	4 G/SQ	ELEM NO.	ц с т ч т ч г т г т г т г т г т г т г т г т		** G/CU

M P/R RATIO	000000000000000000000000000000000000000	
MAC RESP 1/DA		
MAC GROW 1/DA		ouatche
A P/R MAC MAC MAC MAC RATIO LIT N P N&P TOT LIM LIM LIM LIM LIM LIM LIM LIM LIM	1.97 .00 .00 .00 .00 .00 .00 .00 .00 .1.97 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	QUAL-TX projection for Lake Cataouatche,
ALG RESP 1/DA	0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17	QUAL-
ALG GROW 1/DA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ALG ALG ALG ALG ALG SETT LIT N P N&P TOT 1/DA LIM LIM LIM LIM LIM LIM LIM	0.24 .25 .90 .61 .73 .18 0.24 .25 .90 .61 .73 .18 0.24 .25 .90 .61 .72 .18 0.24 .25 .90 .61 .72 .18 0.24 .25 .90 .60 .72 .18 0.24 .25 .90 .60 .72 .18 0.24 .25 .90 .60 .72 .18 0.24 .25 .90 .50 .72 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .59 .71 .18 0.24 .25 .90 .58 .71 .18 0.24 .25 .90 .58 .71 .18 0.24 .25 .90 .58 .71 .18 0.24 .25 .90 .58 .71 .18 0.24 .25 .90 .58 .71 .18	#+
NITR PREF	0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93	F: 1.0=NO3 ; Bayou Verret Bayou Verret
SECCHI DEPTH M	0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	a y Vo
ENDING DIST	12.900 12.800 12.700 12.700 12.500 12.400 12.200 12.200 12.000 11.900 11.500	
elem No.	10840018901111 C	NOTE C TEINAL REACH

NCM *

COLI #/100ML

PHOS CHL A MG/L UG/L

NH3 NO3+2 MG/L MG/L

ORGN MG/L

BOD EBOD MG/L MG/L

DO MG/L

CM-II

CM-I *

SALN

TEMP DEG C

FLOW

ELEM TYPE NO.

0.00

6.8

0.04

0.14 1.68

0.61

5.14 1.35 1.35

0.0

1622.7

0.69

31.20

0:0030

16 UPR RCH

****	MEAN	M/S	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0			
***	DISPRSN	S/W ÖS	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500			
****	TIDAL	M/S	0.000	0.000	0.000	0.000	0.000	0.000	000.0	000.0	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	000.0	000.0			
****	TIDAL	CO M	•	.0	0.	0.	0.	0.	0.		0.		0.	.0	0.		0.	0.	٥.		.0	٥.				ö		•		0	0.	•			
*****	X-SECT AREA	SQ M	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5	174.5		174.5	
***************************************	SURFACE	SQ M	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7.1727	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	7271.7	218150.1		
	VOLUME	CU M	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	17452.	523560.		
ARAMETE	WIDTH	Σ	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7	72.7		72.7	
MULIC E	DEPTH	×	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40	2.40		2.40	
****** HYDRAULIC PARAMETER VALUES	TRAVEL	DAYS	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	67.33	2019.91	2950.30	
	ADVCTV VELO	W/S	0.000	0.000	000.0	0.000	000.0	00000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.00.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000			0.000	
****	PCT		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
*************************************	FLOW	CMS	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0:0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	0:0030	0.0030			
****	ENDING	KW	11.40	11.30	11.20	11.10	11.00	10.90	10.80	10.70	10.60	10.50	10.40	10.30	10.20	10.10	10.00	06.6	9.80	9.70	09.6	9.50	9.40	9.30	9.20	9.10	9.00	8.90	8.80	8.70	8.60	8.50			
****	BEGIN	KW	11.50	11.40	11.30	11.20	11.10	11.00	10.90	10.80	10.70	10.60	10.50	10.40	10.30	10.20	10.10	10.00	9.90	9.80	9.70	9.60	9.50	9.40	9.30	9.20	9.10	00.6	8.90	8.80	8.70	8.60			
****	ELEM		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	TOT	AVG	1

NCM SETT 1/DA		00.0
NCM DECAY 1/DA		
COLI DECAY 1/DA		1
MAC PROD		
ALG PROD **	0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14	ŧ
PO4 SRCE		
DENIT RATE 1/DA		
NH3 SRCE		
NH3 DECAY 1/DA	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	
ORGN SETT 1/DA		00.00
ORGN DECAY 1/DA		
CORR SOD *	1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81	
FULL SOD *	1.81 1.81 1.81 1.81 1.82 1.88 1.88 1.88	
ANBOD DECAY 1/DA		
CBOD SETT 1/DA		0.00
CBOD DECAY 1/DA	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	L/DAY
REAER RATE 1/DA	00000000000000000000000000000000000000	0.28 ** MG/L/DAY
SAT D.O. MG/L	77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38 77.38	RATE
ENDING	11.400 111.300 111.200 111.100 10.900 10.900 10.900 10.900 10.900 10.000 10.000 9.800 9.800 9.200 9.200 9.200 9.200 9.200 9.200 9.200 9.200 9.200 9.200	DEG C M/D
ELEM NO.	ы Э	AVG 20

NCM *	0.00	0.00	00.0	0.00	0.00	0.00	90.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
COLI #/100ML			Ö		0	. 0		. 0	0.	0.	0.	٥.		٥.	0.	0.	0.	0.	0.	0		٥.	٥.	٥.	٥.	0.	°			
MACRO **	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
CHL A UG/L	9.9	တ်ထ	6.8	6.8	8.9	6.7	· · ·	6.7	6.7	9.9	9.9	9.9	9.9	6.5	6.5	6.5	6.5	6.5	6.4	6.4	9 .	6.4	6.4	6.4	6.4	6.3	6.3			
PHOS MG/L	0.04	0.04	0.04	0.04	0.04	0.04	0.0	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04			
TOTN MG/L	2.46	2.50	2.54	2.56	2.58	2.60	2.62	2.65	2.66	2.68	5.69	2.71	2.72	2.73	2.74	2.75	2.76	2.77	2.78	2.79	2.80	2.80	2.81	2.81	2.82	2.83	2.82		K E	
NO3+2 MG/L	1.69	1.70	1.72	1.72	1.73	1.74	1.74	1.76	1.76	1.77	1.77	1.78	1.78	1.79	1.79	1.79	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.79		SCE	
NH3 MG/L	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16			
ORGN MG/L	0.63	0.65	0.68	0.69	0.70	0.71	0.72	0.74	0.75	0.76	0.77	0.77	0.78	0.79	0.80	0.80	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.85	0.86	0.86	0.87			
EBOD MG/L	1.37	1.40	1.43	1.44	1.44	1.45	1.46	1.46	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.46	1.46	1.45	1.45	1.44	1.43	1.42	1.41	1.40	1.38	1.36			
BOD MG/L	1.37	1.40	1.43	1.44	1.44	1.45	1.46	1.46	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.47	1.46	1.46	1.45	1.45	1.44	1.43	1.42	1.41	1.40	1.38	1.36			
DO MG/L	5.13	5.11	5.10	5.10	5.09	5.09	5.08	90.1	5.08	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.08	5.08	5.08	5.09		CM-II =	
CM-II *	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	è	Ž.	
CM-I	1624.1 1625.3	1626.6	1629.2	1630.5	1631.8	1633.1	1634.5	1637 1	1638.4	1639.8	1641.1	1642.5	1643.8	1645.2	1646.5	1647.9	1649.3	1650.6	1652.0	1653.4	4	1656.2	7	1659.0	60.	1661.8	1663.2			
SALN	0.7	7.0	0.7	7.0	0.7	0.7	0.7		0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7			
TEMP DEG C	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20	31.20			
ENDING DIST	11.400	11.200	11.000	10.900	10.800	10.700	10.600	10.000	10.300	10.200	10.100	10.000	9.900	9.800	9.700	9.600	9.500	9.400	9.300	9.200	9.100	9.000	8.900	8.800	8.700	8.600	8.500		II	soumn
ELEM NO.	16																												* CM-I	1

** G/CU M

0.00

6.3

0.04

0.16 1.79

0.87

0.0 5.09 1.36 1.36

0.67 1663.2

31.20

0:0030

46 UPR RCH

COLI . NCM #/100ML *

CHL A UG/L

PHOS MG/L

NH3 NO3+2 MG/L MG/L

ORGN MG/L

EBOD MG/L

BOD MG/L

DO MG/L

CM-II

CM-H

SALN

TEMP DEG C

FLOW

ELEM TYPE NO.

M P/R RATIO		
MAC RESP 1/DA		, I.A
MAC GROW 1/DA		ouatche
A P/R MAC MAC MAC MAC MAC RATIO LIT N P N&P TOT LIM LIM LIM LIM LIM LIM	2.13 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	QUAL-TX projection for Lake Cataouatche, 60% reduction in Bayou
ALG A I RESP RAT 1/DA		QUAL-TX 60% redu
ALG GROW 1/DA	000000000000000000000000000000000000000	
ALG ALG ALG ALG ALG ALG SETT LIT N P N&P TOT 1/DA LIM LIM LIM LIM LIM LIM LIM	0.27 .28 .90 .58 .70 .20 0.27 .28 .90 .58 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .90 .57 .70 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .56 .69 .20 0.27 .28 .91 .55 .69 .20 0.27 .28 .91 .55 .69 .20 0.27 .28 .91 .55 .69 .20 0.27 .28 .91 .55 .69 .20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.27 .28 .91 .55 .69 .19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	#3
NITR PREF	0.92 0.93 0.93	43
SECCHI DEPTH M	0.87 0.88 0.88	Bayou Verre Bayou Verret
M ENDING DIST	11.400 11.300 11.300 11.200 11.0000 11.0000 10.800 10.7000 10.700 10.700 10.700 10.700 10.700 10.700 10.700 10.700 10.7000 10.7	FINAL REPORT REACH NO. 3
elem no.	108 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FINAL

MEAN VELO M/S		
	0.000 0.000	
DISPRSN SQ M/S	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	
TIDAL VELO M/S	0.000	
TIDAL PRISM CU M		
X-SECT AREA SQ M	185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5 185.5	
SURFACE AREA SQ M	8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7 8834.7	
VOLUME CU M	18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553. 18553.	
WIDTH	######################################	
DEPTH M	2.10 2.10 2.110 2.110 2.110 2.110 2.110 2.110 2.110 2.110 2.110 2.110 2.110 2.110	
TRAVEL TIME DAYS	71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58 71.58	10101
ADVCTV VELO M/S	0.000 0.000	
PCT	000000000000000000000000000000000000000	
FLOW	0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030	
ENDING · DIST KM	8.40 8.30 8.10 8.10 7.90 7.70 7.50 7.50 7.20 7.20 7.20 7.30 6.80 6.80 6.50	
BEGIN DIST KM	8.50 8.30 8.30 8.10 8.10 8.10 7.90 7.50 7.40 7.20 7.20 7.20 7.20 7.20 6.90 6.90 6.50	
ELEM NO.	44446 662 662 662 663 663 663 663 663 663 66	;

NCM SETT 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00
NCM DECAY 1/DA	00.00	0.00
COLI DECAY 1/DA	00.00	00.00
MAC PROD	00.00	
ALG PROD **	0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.13	
PO4 SRCE	00.00	0.00
DENIT RATE 1/DA		00.00
NH3 SRCE *	00.00	0.00
NH3 DECAY 1/DA	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.05
ORGN SETT 1/DA	00.00	00.0
ORGN DECAY 1/DA	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01
CORR SOD *	1.79 1.79 1.79 1.79 1.78 1.77 1.77 1.76 1.76 1.76 1.75 1.75 1.75 1.75	0.72
FULL SOD *	1.79 1.79 1.79 1.79 1.78 1.77 1.77 1.77 1.76 1.76 1.76 1.75 1.75 1.75 1.75	
ANBOD DECAY 1/DA		0.00
CBOD SETT 1/DA		0.00
CBOD DECAY 1/DA	0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08	
REAER RATE 1/DA	0.38 0.38 0.38 0.38 0.38 0.38 0.38	0.05 0.31 ** MG/L/DAY
SAT D.O. MG/L	7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.38	RATE
ENDING DIST	8.400 8.300 8.200 8.100 8.100 7.900 7.700 7.500 7.200 7.200 7.200 7.200 6.900 6.500 6.500	C RATE DEG C M/D
ELEM NO.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 DEG C R AVG 20 DEG * G/SQ M/D

NCM *	0.00	0.00	00.00	
COLI #/100ML		00000		
MACRO **	0000	0.0000	0000000000000	
CHL A UG/L	4 6 6 6	6.2		
PHOS MG/L	0.04 0.04 0.04	0.0000	0.03 0.03 0.03 0.03 0.03 0.03	
TOTN MG/L	2.82 2.82 2.82 2.83	2 2 2 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	22.22.22.22.23.38.44.44.44.44.44.44.44.44.44.44.44.44.44	
NO3+2 MG/L	1.79 1.78 1.78 1.77	1.76	1.73 1.72 1.71 1.69 1.68 1.67 1.65 1.65 1.65 1.63 1.63 1.63 1.63	
NH3 MG/L	0.16 0.16 0.16 0.16	0.16 0.16 0.16 0.16	0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15	
ORGN MG/L	0.87 0.88 0.88 0.89	0.90 0.90 0.92 0.93	0.94 0.95 0.96 0.99 1.00 1.00 1.00 1.00 1.10	
EBOD MG/L	1.34 1.33 1.32 1.31	1.31 1.32 1.33 1.35	1.40 1.53 1.53 1.66 1.05 2.02 2.22 2.22 2.22 5.00 5.00	
BOD MG/L	1.33 1.33 1.31	1.31 1.32 1.33 1.35	11.40 11.43 11.53 11.59 11.983 11.983 22.22 22.22 23.40	
DO MG/L	5.09 5.10 5.10	5.10 5.10 5.10 5.10	5.11 5.11 5.12 5.12 5.13 5.22 5.28 5.28 5.48 5.65 6.20	
CM-II	0000	00000	ži	
CM-I	1664.6 1665.9 1667.3 1668.6	1670.0 1671.3 1672.7 1674.1	1676.8 1678.2 1679.6 1681.0 1682.4 1683.8 1685.2 1686.6 1688.0 1690.8 1692.2	
SALN	0.7	0.0000		
TEMP DEG C	31.20 31.20 31.20 31.20	31.20 31.20 31.20 31.20	31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20	
ENDING	8.400 8.300 8.200 8.100	8.000 7.900 7.800 7.700		soumn T
ELEM NO.	44 4 4 4 8 8 4 8 8 9 9 9 9 9 9 9 9 9 9 9	0 2 2 2 2 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4	\$55 56 57 57 58 60 60 61 62 63 64 64 64 67 64 67 67 67 67 67	n⊃/5 **

,

M P/R RATIO	
MAC RESP 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
MAC GROW 1/DA	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
A P/R MAC MAC MAC MAC RAC RATIO LIT N P N&P TOT LIM LIM LIM LIM LIM LIM LIM LIM	1.17 2.32 .00 .00 .00 .00 0.00 0.00 0.00 0.0
ALG RESP 1/DA	0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
ALG GROW 1/DA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ALG ALG ALG ALG ALG LIC LIT N P N&P TOT LIM LIM LIM LIM LIM	32 .91 .55 .68 .22 .32 .91 .55 .68 .22 .32 .91 .55 .68 .22 .32 .91 .55 .68 .22 .32 .91 .55 .68 .22 .32 .91 .54 .68 .22 .32 .91 .54 .68 .21 .32 .90 .54 .68 .21 .32 .90 .54 .68 .21 .32 .90 .54 .67 .21 .32 .90 .53 .67 .21 .32 .90 .53 .67 .21 .32 .90 .53 .67 .21 .32 .90 .52 .66 .21 .32 .90 .52 .66 .21 .32 .90 .52 .66 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .32 .90 .50 .64 .21 .33 .90 .50 .64 .21
ALG SETT 1/DA	0.31 .3 0.31 .3
NITR PREF	88 0.92 88 0.92 88 0.92 88 0.92 88 0.91 88 0.91 88 0.91 88 0.91 88 0.91 88 0.91 88 0.91 88 0.91 88 0.91 89 0.92 89 0.92 89 0.92 89 0.92 89 0.92 89 0.92 89 0.92
SECCHI DEPTH M	0.88 0.88 0.88 0.88 0.88 0.88 0.89 0.89
ENDING	8.400 8.300 8.200 8.100 7.900 7.900 7.500 7.500 7.200 7.200 7.200 6.900 6.900 6.900 6.500 6.500 6.500 6.100 7.000
ELEM NO.	46 47 48 49 50 51 52 53 53 54 60 61 62 63 64 65 67 NOTE O

* * * * * * * * * * * * * * * * * * * *	NCM	*	0.00	0.00	0.00
**************** REACH INDUTS ************************************	COLI	#/100ML		0.	٥.
****	CHL A	1/9n	5.1	12.0	12.0
***	PHOS	MG/L	0.03	0.20	0.20
***	NO3+2	MG/L	1.58	0.05	0.05
****	NH3	MG/L	0.14	0.22	0.22
***	ORGN	MG/L	1.12	1.19	1.19
***	EBOD	MG/L	2.59	4.03	4.03
APUTS *:	BOD	MG/L	2.59	4.03	4.03
REACH II	8	MG/L	6.20	1.47	6.70
· *****	CM-II	*	0.0	0.0	0.0
****	CM-I	*	1693.7	995.0	300.0
*****	SALN	PPT	0.52	0.56	0.17
*******	TEMP	DEG C	31.20	31.20	31.20
*****	FLOW	CMS	0.0030	0.0030	0.0030
***********************************	TYPE		UPR RCH	WSTLD	WSTLD
***	ELEM	NO.	89	89	89

	25
	of
	20
	Page

ELEM	BEGIN	ENDING		FLOW	PCT	ADVCTV	TRAVEL	L DEPTH		WIDTH	VOLUME	SURFACE		X-SECT	TIDAL	H		DISPRSN	MEAN	
NO.	DIST	DIST		CMS	EFF	VELO M/S	TIME	Ħ		Œ	CO M	SO	AKEA A SQ M S	AKEA SQ M	CU M	M/S	SQ M/S	M/S	VELC M/S	
9	6.30	4.90		0600.0	2.99	0.000	12678.95	5 2.20	0 3201.0		9859154.	4481434.0		7042.3	0.	000.0		2.600	0.000	
TOT AVG CUM						0.000	12678.95 17203.96		2.20 3201.0		9859154.	4481434.0		7042.3						
* * * *	*****************	* * * * * *	* * * * *	****	.**	* * * *	BIOLOG:	ICAL AN	D PHYS:	ICAL CO	BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	** SINI	* * * * *	* * * * *	***	* * * *	* * * * * * * * * * * * * * * * * * * *	* * * *	* * *	
ELEM NO.	ENDING DIST	SAT D.O. MG/L	REAER RATE 1/DA	CBOD DECAY 1/DA	CBOD SETT 1/DA	ANBOD DECAY 1/DA	FULL SOD *	CORR SOD *	ORGN DECAY 1/DA	ORGN SETT 1/DA	NH3 DECAY 1/DA	NH3 SRCE *	DENIT RATE 1/DA	PO4 SRCE P	ALG N PROD PF	MAC COPRODE DEC	COLI N DECAY DEC	NCM DECAY SI	NCM SETT 1/DA	
89	4.900	7.37	0.52	0.08	00.00	00.00	0.71	0.71	0.01	00.00	0.20	0.02	00.0	0.00.0	0.03 0.	0 00.0	0.00 0.	0.00.0	0.00	
20 DEG AVG 20	20 DEG C RATE AVG 20 DEG C RATE	RATE	0.42	0.05	00.00	00.00		0.30	0.01	00.00	0.10	0.01	00.0	00.00		0	0.00	0.00	0.00	
* G/SQ M/D	σ/w α		** MG/L/DAY	L/DAY		r														
***	*************************************	******	*****	*****	*****		* WATE	CONTIN	TY CON	STITUES	** WATER QUALITY CONSTITUENT VALUES *****************************	**** S	****	****	***	***	******	***	***	
ELEM NO.	ENDING	TEMP DEG C	SALN	CM-I	Ü	CM-II	DO MG/L N	BOD I	EBOD MG/L	ORGN MG/L	NH3 MG/L	NO3+2 MG/L	TOTN MG/L	PHOS MG/L	CHL A UG/L	MACRO **		COLI #/100ML	NCM *	
89	4.900	31.20	8.0	1693.7	J	0.0	6.22 2	2.60	2.60	1.13	0.14	1.58	2.84	0.03	5.1	0.0		0.	00.00	
* CM-I =	cond mmhos	m				CM-I	# II.					ž	NCM =							
***	*************************	****	****	* * * * *	****		***	LGAE AN	VD MACE	OPHYTE	***** ALGAE AND MACROPHYTE DATA *****************************	***	****	* * * *	* * * * *	* * *	* * * * *	*****	* *	
ELEM NO.	ENDING	SECCHI DEPTH M	NITR PREF	ALG ALG SETT LIT 1/DA LIM	ALG LIT LIM		ALG ALG N&P TOT LIM LIM	ALG GROW 1 1/DA	S ALG W RESP A 1/DA		A P/R MAC MAC MAC RATIO LIT N P LIM LIM LIM	MAC MAC MAC LIT N P LIM LIM LIM	MAC N&P LIM	MAC M TOT GR	MAC M GROW RE 1/DA 1/	MAC M P/R RESP RATIO 1/DA	. 10 10			
89	4.900	68.0	0.92	0.12	.31.9	.90 .50	.64 .20	0.27	7 0.17		1.27 .00	00.00.	00	.00 00.	0.00	0.00	00.0	-		
20 DEG	C RATE			0.20				0.80	0.10	0				00.00	00.00	00				
NOTE 0	ON NITR PREF:		1.0=NO3 ;	; 0.0=NH3	н3															
FINAL REPORE	REPORT NO. 5	Bayoı Lake (Bayou Verret Lake Cataouatche	t cche #2	ŧ				ng 09	AL-TX % redu	QUAL-TX projection for Lake Cataouatche, LA 60% reduction in Payou	ion for 1 Bayou	: Lake (Cataoua	tche, L	æ				

- 2	Ń
•	v
•	н
	o
	v
	-1
- 2	v
•	·V
	g
	×.
	Ų
	ď
1	ы
	_

* * * *	NC#	00.00	* * * *	MEAN VELO M/S	0.000		* * * * * * * * * * * * * * * * * * * *	NCM SETT 1/DA	0.00	0.00		* * * *	NCM *	0.00	
***************************************	COLI #/100ML	0.	**************************************	DISPRSN SQ M/S	2.600		BIOLOGICAL AND PHYSICAL COEFFICIENTS ************************************	NCM DECAY S 1/DA 1	00.0	0.00		******* WATER QUALITY CONSTITUENT VALUES ********************************	COLI #/100ML	· •	
***	CHL A UG/L	5.1	* * * * * *	TIDAL VELO M/S	0.000		* * * * * * *	COLI DECAY 1/DA	00.00	0.00		*****	MACRO	0.0	
****	PHOS MG/L	0.03	****	TIDAL PRISM CU M	0.		* * * * * *	ALG MAC ROD PROD	02 0.00			****	CHL A 1 UG/L	5.7	
* * * * * *	NO3+2 MG/L	1.58	* * * * * * * * * * * * * * * * * * * *	S & M	9.1	9	**	PO4 ALG SRCE PROD * **	0.00 0.02	00.00		****	PHOS C	0.03	
* * * *	NH3 MG/L	0.14	* * * * *	X-SECT AREA SQ M	13698.6	13698.6	* * * * * * *	DENIT P RATE SR 1/DA	0.00 0.	0.00 0.		****	TOTN MG/L	2.73 (N
* * * * *	ORGN MG/L	1.13	***	SURFACE AREA SQ M	8561643.0	8561643.0	***	ш				****		1.44 2	NCM
* * * * * *	EBOD MG/L	2.60	*** SE				CIENT	01	1 0.02	.0 0.01		LUES *	3 NO3+2 L MG/L		
* * *			VALUI	VOLUME CU M	54794	20547944	COEFFI	NH3 DECAY 1/DA	0.21	0.10		ENT VA	NH3 MG/L	0.14	
INPUTS	BOD MG/L	2.60	AMETER	WIDTH	7.8 20		SICAL	ORGN SETT 1/DA	00.00	0.00		STITU	ORGN MG/L	1.15	
REACH	DO MG/L	6.22	IC PAR	DEPTH W	2.40 5707.8 20547944	10 5707.8	VD PHYS	ORGN DECAY 1/DA	0.01	0.01		TY CON	EBOD MG/L	2.71	
* * * *	CM-II	0.0	YDRAUL			2.40	ICAL A	CORR SOD *	0.12	00.0		L QUALI	BOD MG/L	2.71	
* * * * *	CM-I	.7	H ****	TRAVEL TIME DAYS	26424.83	26424.83 43628.79	SIOLOG:	FULL SOD *	0.12			WATE	DO MG/L N	6.50 2	Н
************* REACH INPUTS		1693.7	* * * * * *	ADVCTV VELO M/S	0.000 2	0.000	· ****	ANBOD DECAY 1/DA	00.0	00.00		* * * * * *		0.0	CM-II
****	SALN	08.0	***	PCT F	66.7 0	0		CBOD SETT 1/DA	00.00	00.00			CM-II	0	
* * * * * *	TEMP DEG C	31.20	* * * * * *	FLOW	0600.0		****	CBOD DECAY 1/DA	0.08	0.05	** MG/L/DAY	****	CM-I	1694.1	
***	FLOW D		* * * * * *		0		***	REAER RATE 1/DA	0.48	0.39	** MG/	****	SALN	1.0	
****	T.	0.0090	* * * * *	ENDING DIST KM	3.40		*****	SAT I D.O. MG/L	7.36	ATE		*****	TEMP S	31.20	
******************************	TYPE	UPR RCH	* * * * * * *	BEGIN DIST KM	4.90		************	ENDING DIST	3.400	20 DEG C RATE AVG 20 DEG C RATE	M/D	*************	ENDING DIST I	3.400 3	= cond umbos
* * * *	ELEM NO.	69	* * * *	ELEM NO.	69	TOT AVG CUM	***	ELEM I	69.	20 DEG AVG 20	* G/SQ M/D	* * * *	ELEM E	69	* CM-I = cond umbo: ** G/CU M

~
ð
22
Page

					* * *	NCM *	0.00	* *	MEAN VELO M/S	0.000		* * *	NCM SETT 1/DA	00.00	00.0	
					REACH INPUTS ************************************	COLI #/100ML	0.	******** HYDRAULIC PARAMETER VALUES *************************	DISPRSN SQ M/S	2.600 0		BIOLOGICAL AND PHYSICAL COEFFICIENTS *******************************	NCM N DECAY SE 1/DA 1/	0.00 0.	0.00	•
M P/R RATIO	00.0				* * * *	CHL A UG/L	5.7	* * *	TIDAL DI VELO M/S SÇ	0.000		***	COLI DECAY D 1/DA	00.00	0.00	
MAC RESP 1/DA	00.00	00.0		E.	***	PHOS CI	0.03	****	TIDAL TI PRISM V	0.0		*****	MAC PROD **	00.00		
MAC GROW 1/DA	00.0	00.0		projection for Lake Cataouatche, ction in Bayou	***	NO3+2 F MG/L N	1.44 0	* * * *				*****	ALG PROD **	0.03		
C MAC P TOT M LIM	00.0			ke Cata	****	NH3 NO MG/L M	0.14 1	* * * * * *	X-SECT AREA SQ M	14246576.0 13698.6	13698.6	****	PO4	00.00	0.00	
MAC MAC P N&P LIM LIM	00.00.			for La	****	ORGN NG/L MG	1.15 0.	***	SURFACE AREA SQ M	576.0 1		*****	DENIT RATE 1/DA	00.0	0.00	
MAC MAC LIT N LIM LIM	00.00.			ection n in Ba	****			* * *			14246576.0	IENTS	NH3 SRCE	0.03	0.01	
A P/R M RATIO L	1.19			J-TX projection for reduction in Bayou	***	D EBOD L MG/L	1 2.71	VALUES	VOLUME CU M	35616436.	35616436.	COEFFIC	NH3 DECAY 1/DA	0.21	0.10	
ALG P RESP F 1/DA	0.17	0.10		QUAL-TX 60% redu	INPUTS	BOD MG/L	2.71	KAMETER	WIDTH M	5479.5 35	35.	SICAL (ORGN SETT 1/DA	00.00	00.00	
ALG GROW 1	0.25 (0.80				DO MG/L	6.50	LIC PAR	рертн W М	2.50 547	2.50 547	AND PHY	ORGN DECAY 1/DA	0.01	0.01	
ALG TOT G LIM 1	.19	0			****	CM-II	0.0	HYDRAU				SICAL A	CORR SOD *	0.18	0.00	
ALG N&P LIM	. 65				* * * * * *	CM-I	1694.1	* * * *	7 TRAVEL TIME DAYS	0.000 45803.04	45803.04 89431.82		FULL	0.18		
ALG ALG N P LIM LIM	.89 .51				****			****	ADVCTV VELO M/S	000.0	0.000	* * * * *	ANBOD DECAY 1/DA	00.00	0.00	
ALG ALG SETT LIT 1/DA LIM	11 .29	50	0.0=NH3	£#	* * * * * * * * * * * * * * * * * * * *	SALN	0.99	****	PCT EFF	66.7		****	CBOD SETT 1/DA	00.00	00.00	
ω μ	0.11	0.20	• .	ret uatche	* * * * * *	TEMP DEG C	31.20	****	FLOW	0600.0		****	CBOD DECAY 1/DA	0.08	0.05	** MG/L/DAY
NITR I PREF	0.91		1.0=NO3	Bayou Verret Lake Cataouatche	·* ** **	FLOW CMS I		****				*****	REAER RATE 1/DA	0.45	0.37	** MG
SECCHI DEPTH M	0.88			Bay Lake	***	ᄪ	0600.0	****	ENDING DIST KM	08.0		****	SAT D.O. MG/L	7.36	ATE	
ENDING DIST	3.400	C RATE	NOTE ON NITR PREF:	REPORT NO. 6	********************	TYPE	UPR RCH	**************	BEGIN DIST KM	3.40		******************	ENDING	. 008.0	20 DEG C RATE AVG 20 DEG C RATE	M/D
ELEM NO.	69	20 DEG	NOTE O	L FINAL 1 REACH 1	* * * *	ELEM 1	70 [** **	ELEM NO.	70	TOT AVG CUM	***	ELEM E	70	20 DEG AVG 20	* G/SQ M/D

***	NCM *	00.0		****						* * *	NCM *	0.00	* *	MEAN VELO M/S	0.000.0	
******* WATER QUALITY CONSTITUENT VALUES ************************************	COLI #/100ML			*						**************************************	COLI #/100ML	0.	******** HYDRAULIC PARAMETER VALUES *****************************	DISPRSN SQ M/S	2.600 0	
***	MACRO **	0.0		*****	M P/R RATIO	00.0				* * * * * * *	CHL A UG/L	8.4	***	TIDAL VELO M/S	000.0	
****	CHL A UG/L	8.4		****	MAC RESP 1/DA	00.00	00.00		he, LA	****	PHOS (0.04	****	TIDAL 1 PRISM CU M	0.0	
*****	PHOS (0.04		****	MAC GROW 1/DA	00.00	00.0		Lake Cataouatche,	* * * * * * *	NO3+2 MG/L	1.00	***		۰.	9.
****	TOTN MG/L	2.30	11	****	MAC MAC N&P TOT LIM LIM	.00 00.			Lake Ca	****	NH3 MG/L	0.15	*****	X-SECT AREA SQ M	15197.6	15197.6
***** S5	NO3+2 MG/L	1.00	NCM =	********** ALGAE AND MACROPHYTE DATA ***********************	MAC P LIM	00.00.00.				****	ORGN MG/L	1.16	***	SURFACE AREA SQ M	6754475.0	6754475.0
NT VALUE	NH3 MG/L	0.15		3 DATA *	A P/R MAC MAC RATIO LIT N LIM LIM	1.16 .00			QUAL-TX projection for 60% reduction in Bayou	****	EBOD MG/L	3.91	ALUES *	VOLUME CU M	12158055.	12158055.
STITUE	ORGN MG/L	1.16		ROPHYTI	ALG A I RESP RAT 1/DA	0.17 1.	0.10		UAL-TX 0% redu	MPUTS *	BOD MG/L	3.91	ETER V	WIDTH V M		
ITY CON	EBOD MG/L	3.91		AND MAC	щн				ÖĞ	EACH II	DO MG/L	6.30	C PARA		0 8443.1	1.80 8443.1
r qual	BOD MG/L	3.91		ALGAE 1	9 4	8 0.24	0.80			K ****	CM-II *	0.0	ORAULI	БЕРТН	1.80	
*** WATE	DO MG/L	6.30	CM-II =	***	ALG ALG N&P TOT I LIM LIM	.68 .18			•	****	CM-I	4.6	H ****	TRAVEL TIME DAYS	0.000 15635.36	15635.36 105067.18
****	CM-II	0.0	C.W.		ALG ALG N P LIM LIM	.85 .57				*****		1694.6		ADVCTV VELO M/S	0.000	0.000
****	CM-I C	9.		***	ALG ALG ALG ALG SETT LIT N P 1/DA LIM LIM LIM	0:10 .27	20	0.0=NH3	#	*****	SALN	1.01	****	PCT	66.7	
****		1694.6		****			0.20		Bayou Verret Lake Cataouatche #4	****	TEMP DEG C	31.20	****	FLOW	0600.0	
****	SALN PPT	1.0		****	NITR PREF	0.87		1.0=NO3 ;	Bayou Verret ake Cataouat	****	FLOW		* * * * *			
****	TEMP DEG C	31.20	, w	****	SECCHI DEPTH M	0.85			Bay Lake	****	Ēsi T	0600.0	***	ENDING DIST KM	00.00	
***********************	ENDING DIST	0.800	cond mhos	*****************	ENDING DIST	0.800	C RATE	NOTE ON NITR PREF:	FINAL REPORT REACH NO. 7	****	TYPE	UPR RCH	***********	BEGIN DIST KM	0.80	
* * *	ELEM NO.	70	* CM-I = (***	ELEM NO.	70	20 DEG	NOTE O	t FINAL REPC REACH NO.	****	ELEM '	71 1	***	ELEM NO.	71	TOT AVG CUM
															J.	

~
of
24
age
Pa

No.
Name
Name
Name
NET CEOD CEOD ANEOD FULL CORR CORGN CORGN NH3 NH3 DENIT PO4 ALE NL5
CEOD CEOD CEOD ANBOD FULL CORR ORGN
Name
NG/L/DAY NG/L/D
Name
NTE DECAY SETT DECAY SOD FULL CORR ORGN ORGN NTE DECAY SETT DECAY SOD SOD DECAY SETT DA 1/DA 1/DA 1/DA * * 1/DA 1/DA 1/DA 1/DA 1/DA 1/DA 1/DA 1/DA
NEE CBOD CBOD ANBOD FULL CORR ORGN
NG/L/DAY NG/L/DAY NG/L/DAY TERM ALG ALG ALG ALG CORR NG/L/DAY NG/L/DAY THE ALG
NG/L/DAY MG/L/DAY CM-II =
NTE DECAY SETT DECAY 1/DA 1/DA 1/DA 1/DA 64 0.08 0.00 0.00 52 0.05 MG/L/DAY ***********************************
MYE DECAY SETT DA 1/DA 1/DA 64 0.08 0.00 0.05 52 0.00 MG/L/DAY ***********************************
AER CBOD ATE DECAY
MER (17E) 10 A (1
REAEE RATE 1/DE 1/DE 0.64 0.52 ** * * * * * * * * * * * * * * * * * *
SAT REAE D.O. RAT MG/L 1/D 7.37 0.6 KATE 0.5 KATE 0.5 TEMP SALN DEG C PPT 31.20 0.9 SECCHI NIT DEPTH PRE M 0.78 0.64
NO. DIST D.O.
DIST D.O. NO. DIST D.O. AG/1 71 0.000 7.37 20 DEG C RATE * G/SQ M/D **************** ELEM ENDING TEM NO. DIST DEG C * CM-I = cond umhos ** G/CU M ** G/CU M 71 0.000 31.2 * CM-I = cond ** G/CU M THOUSE C RATE ** G/CU M ** NOTE ON NITR PREF:

Page 25 of 25

QUAL-TX projection for Lake Cataouatche, LA 60% reduction in Bayou

INPUT/OUTPUT LOADING SUMMARY

	FLOW	DO KG/D	BOD KG/D	ORG-N KG/D	NH3-N KG/D	NO3-N KG/D	PHOS KG/D	CHL A KG/D	NCM
HEADWATER INFLOW INCREMENTAL INFLOW INCREMENTAL OUTFLOW INCREMENTAL OUTFLOW NON-POINT INPUT WASTELOADS WITHDRAWLS OUTFLOW THRU LOWER BNDRY DISPERSION THRU LOWER BNDRY REAERATION BACKROUND BENTHAL AEROBIC BOD DECAY BOD SETTLING ANAPPORT ROD DECAY	0.003 0.000 0.000 0.000 0.000 0.000	0.8 0.0 0.0 2.1 2.1 -160.8 39368.7 -3438.8	1.0 0.0 21286.0 2.1 2.1 1.395.5 -3.1 1.395.5	0.3 0.0 1334.8 0.6 0.0 -0.8	0.1 0.0 0.1 0.1 -0.1 -25.5	0.0 0.0 0.0 .0 0.0 -0.2 -1582.7	0.0 0.0 0.0 0.0 0.0 0.0 8.5	3.1 0.0 0.0 6.2 0.0 -11.9 18507.1	0.0.0.0.0.0
ORGANIC N HYDROLYSIS ORGANIC N SETTLING NH3 DECAY BACKGROUND NH3 SOURCE DENITRIFICATION PHOSPHORUS SOURCE ALGAE PHOTOSYNTHESIS ALGAE RESPIRATION ALGAE RESPIRATION ALGAE SETTLING MACRO PHOTOSYNTHESIS NCM DECAY NCM SETTLING		0.0 -9920.6 -13264.9 -6322.7 0.0	0.0	0.0	1116.7 0.0 -2291.1 800.3 -164.2 563.8	2291.1 0.0 -708.3	1.6 -133.4 86.2 0.0	171070.6 -110540.5 -79033.8	0.0
TOTAL INPUTS TOTAL OUTPUTS	600.0-	55794.4 -55794.3	22684.6 -22684.6	1335.7	2480.9 -2480.9	2291.2 -2291.2	133.5	189587.0 -189586.2	0.0
NET CONVERGENCE ERROREXECUTION COMPLETED	0.000	0.1	0.0	0.0	0.0	0.0	0.0	~8 ~ 0	0.0

TMDL Calculations

NONPOINT SOURCES:

Loads from Benthic Nutrient Sources and NPS Mass Loads:

NPS mass	kg/day)	Organic N	6.0	8.3	9.6	100	325	092	150
NPS	loads (kg/day)	CBODn	24.0	0.99	36.0	2000.0	3000.0	13280.0	2880.0
oads (kg/day) from	benthic sources	Phosphorus	0.02	0.02	0.02	00.0	00.0	00.0	0.00
Loads (kg/	benthic	Ammonia N	0.01	0.01	0.01	44.81	85.62	178.08	99.09
Benthic source	m2/day):	Phosphorus	0.0025	0.0025	0.0025	0.0	0.0	0.0	0.0
Benthic	rates (g/m2/day):	Ammonia N	0.001	0.0014	0.001	0.01	0.01	0.0125	0.0075
Surface	Area	(m2)	5954.5	7271.7	8834.7	4481434.0	8561643.0	14246576.0	6754475.0
		Reach	1	2	3	4	2	9	7

1334.80 21286.00 90.0 359.20 Totals:

Loads from Headwaters and Tributaries

	Flow		Con	Concentrations (mg/L)	ng/L)				Loads (kg/day)		
Name of inflow	(m3/sec)	CBODn	Organic N	Ammonia N	Ammonia N NO2+NO3 N Phosphorus	Phosphorus	CBODu	Organic N	Ammonia N NO2+NO3 N Phosphorus	NO2+NO3 N	Phosphorus
Headwater (Bayou Verret)	0.003	4.03	1.19	0.22	0.05	0.2	1.04	0.31	90:0	0.01	0.05
Davis Pond Freshwater Diversion	0.003	4.03	1.19	0.22	0.05	0.2	1.04	0.31	0.00	0.01	0.05
Louisiana Cypress Lumber Canal	0.003	4.03	1.19	0.22	0.05	0.2	1.04	0.31	90:0	0.01	0.05
Totals:							3.12	0.93	0.18	0.03	0.15
Total Nonpoint Source Loading:	Loading:						21289.12	1335.73	359.38	0.03	0.21
Nonpoint Source Margin of Safety and Future Growth = Nonpoint Source Load allocation =	in of Safety an allocation =	d Future Gro	wth =	20% 80%	11 11		4257.82 17031.30	267.15 1068.58	71.88 287.50	0.01	0.04

POINT SOURCES

Flows and Concentrations from Oxygen Demanding Point Sources:

	Expected	Expected f	Expected flow divided						
	flow	by 0.80 (for	0.80 (for 20% MOS)	CBOD5	CBODu	Organic N	Ammonia N	Organic N Ammonia N NO2+NO3 N Phosphorus	Phosphorus
Name of discharger	(MGD)	(MGD)	(m3/sec)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Luling Oxidation Pond ^{1,2,3}	2.6	3.25	0.14239	10	23	2	4	10	2
ADM / Growmark Ama Facility ^{3,4,5}	0.01	0.0125	0.00055	30	69	10	9	10	2
Schmill's Gator Farm ^{3,4,5}	0.01	0.0125	0.00055	0E	69	10	2	10	2

Notes: 1. Expected flow and CBOD5 values based on data extracted from EPA's Permit Compliance System (PCS).

2. Assumed organic N and ammonia N concentrations (and their proportion) based on guidance in LTP for advanced treatment.

Concentrations for NO2+NO3 and phosphorus are assumed values.
 Expected flows are assumed values (no information concerning effluent flow rates was available).
 Assumed CBOD5, organic N and ammonia N concentrations based on guidance in LTP for secondary treatment.

Loads from Point Sources:

	Flow		Conc	Concentrations (mg/L)	ng/L)				Loads (kg/day	()	
Name of discharger	(m3/sec)	CBODu	Organic N	Ammonia N	NO2+NO3 N	Ammonia N NO2+NO3 N Phosphorus	CBODu	Organic N	Ammonia N	Organic N Ammonia N NO2+NO3 N Phosphorus	Phosphorus
Luling Oxidation Pond 0.14239	0.14239	23	2	4	10	2	282.96	24.60	49.21	123.02	61.51
ADM / Growmark Ama Facility	0.00055	69	10	5	10	2	3.28	0.48	0.24	0.48	0.24
Schmill's Gator Farm	0.00055	69	10	5	10	5	3.28	0.48	0.24	0.48	0.24
Total Loads:							289.52	25.56	49.69	123.98	61.99
Point Source Margin of Safety and Future Growth = Point Source Load allocation =	Safety and Fu	uture Growth =	II	20% 80%	11 11		57.90 231.62	5.11 20.45	9.94 39.75	24.80 99.18	12.40 49.59

OVERALL SUMMARY

			Loads (kg/da)	(/	
	CBODu	Organic N	Ammonia N	Ammonia N NO2+NO3 N Phosphorus	Phosphorus
Point source wasteload allocation (WLA)	231.62	20.45	39.75	99.18	49.59
Nonpoint source load allocation (LA)	17031.30	1068.58	287.50	0.02	0.17
Explicit Margin of Safety (10%)	2157.86	136.13	40.91	12.41	6.22
Future Growth (10%)	2157.86	136.13	40.91	12.40	6.22
Total maximum daily load (TMDL)	21578.64	1361.29	409.07	124.01	62.20
Sums for error checking: 21578.64	21578.64	1361.29	409.07	124.01	62.20

FILE: R:\PROJECTS\2110-611\CD_LAKE_CAT\APP Y TMDL CALCS\TMDL_CALCS_020333.XLS

Ammonia Toxicity Calculations

TABLE Z.1. AMMONIA TOXICITY CALCULATIONS FOR LAKE CATAOUATCHE

Equations are from 1999 Update of Ambient Water Quality Criteria for Ammonia (EPA-822-R-99-014, Dec. 1999).

Use chronic criterion when fish early life stages are present (as mentioned on page 88, this is the same as CCC for early life stages absent when temp > 15°C)

CCC, in mg N/L = $[0.0577/(1+10^{7.688-pH}) + 2.487/(1+10^{pH-7.688})] * MIN [2.85, 1.45*10^{0.028*(25-T)}]$

Note: CCC is the Chronic Criterion Concentration

pH value used in this calculation is average summer value for LDEQ Station 0910 (see data below). Temperature value used in calculation is estimated 90th percentile summer value for LDEQ station 0910.

Season	Average pH	Temperature	Calculated CCC
	(su)	(°C)	(mg N/L)
Summer	7.31	31.2	1.72

pH values for LDEQ Station 0910:

Summer (May - Oct):

Date	Value
10/31/2000	7.12
10/3/2000	7.38
9/12/2000	7.05
8/8/2000	6.75
7/11/2000	7.24
6/13/2000	7.45
5/9/2000	8.19
Average =	7.31

FILE: R:\PROJECTS\2110-611\CD_LAKE_CAT\APP Z AMMONIA TOXICITY\AMMONIA TOXICITY.XLS

Responses to Public Comments

COMMENTS AND RESPONSES LAKE CATAOUATCHE TMDLs FOR DO AND NUTRIENTS March 25, 2005

EPA appreciates all comments concerning these TMDLs. Comments that were received are shown below with EPA responses or notes inserted in a different font.

COMMENTS FROM LOUISIANA DEPARTMENT OF ENVIRONMENTAL QUALITY (LDEQ):

1. <u>Page 2-5 - 2.3 Point Sources:</u> A list of the dischargers should be included in the report. The list should indicate if the facility was modeled or just included in the TMDL. The list should also indicate the permit limits as a result of this TMDL. Any resulting permit limits should be presented in the Executive Summary and section 7.8 Model Results for Projection.

Response: The point source list in Appendix A indicates which facilities were modeled, which ones were included in the TMDLs, and the effluent concentrations that were simulated in the model (which were set equal to permit limits). As stated in the body of the report, the modeling and TMDLs assume no changes to current permit limits for point source discharges.

2. <u>Page 3-3 - Figure 3.1 Sampling Locations for Subsegment 020303:</u> Stations 020303-15, T1, T2, and T3 are not shown on the diagram. If possible, they should be shown on the figure.

Response: These four stations have been added to Figure 3.1.

3. Page 4-5 - 4.9 Headwater Water Quality (Data Types 21 and 22): The combination of Table 3.1 and the wording of section 4.9 make it appear as if stations 020303-1A and 020303-1B were from the calibration and verification surveys, respectively. As a result, it appears as if parameter values for the calibration and verification surveys were averaged and used as model input for the calibration survey. In actuality, both stations 020303-1A and 020303-1B were from the calibration survey. This was not discernible without the appendices.

Response: Samples 020303-1A and 020303-1B were duplicate samples at the same station during the same survey. To reduce the confusion, Table 3.1 has been revised to show only one station (020303-1) and Section 4.9 has been revised to describe 020303-1A and 020303-1B as separate samples rather than separate stations.

4. <u>Page 7-2 - 7.2 Temperature Inputs:</u> The first paragraph states that LDEQ Ambient monitoring station 0910, Bayou Gauche west of Avondale, Louisiana, was used to assess subsegment 020303 (Lake Cataouachee and Tributaries). This station does not appear to be representative of Lake Cataouachee. This station has only one year of data. Therefore, LDEQ Ambient monitoring station 0296 Bayou Segnette near Westwego, Louisiana, was selected to calculate the 90th percentile temperature value. This station does not appear to be representative of Lake Cataouachee.

Response: Temperature data from station 0910 were considered the most representative of Lake Cataouatche because those were the only routine monitoring data that were available for subsegment 020303. Differences between Bayou Segnette and the Lake Cataouatche subsegment were accounted for by adjusting the Bayou Segnette 90th percentile temperature based on differences between temperatures at stations 0910 and 0296 during 2000.

5. Page 8-1-8.0 TMDL Calculations: This section should include discussion concerning how small dischargers should be allocated. An example used by LDEQ is as follows:

"The nonconservative behavior of dissolved oxygen allows many small to remote point source dischargers to be assimilated by their receiving waterbodies before they reach the modeled waterbody. These dischargers are said to have very little to no impact on the modeled waterbody and therefore, they are not included in the model and are not subject to any reductions based on this TMDL. These facilities are permitted in accordance with state regulation and policies that provide adequate protective controls. New similarly insignificant point sources will continue to be issued permits in this manner. Significant existing point source dischargers are either included in the TMDL model or are determined to be insignificant by other modeling. New significant point source dischargers would have to be evaluated individually to determine what impact they have on the impaired waterbody and the appropriate controls."

Response: This text has been added to Section 8.2 of the report.

6. <u>8.5 Ammonia Toxicity Concerns:</u> Since this waterbody was not listed on the 303(d) list for ammonia, this discussion is unnecessary and should be deleted from the report.

Response: Ammonia toxicity calculations were performed to ensure that the ammonia loadings that will maintain DO standards will not cause any exceedences of the ammonia toxicity criteria. National guidance for ammonia toxicity was used in the absence of any numerical state water quality standards for ammonia. EPA believes this evaluation offers assurances that waters will continue to be free from the effects of toxic substances.

7. Page 9-1-9.0 Other Relevant Information: This section should be updated to include the new 4-year sampling cycle.

Response: Section 9.0 describes LDEQ's 4-year sampling cycle.

8. <u>Dissolved Oxygen / Reaeration:</u> It is stated, "the long term average wind speeds for each month of the year for New Orleans were examined and the lowest values within each season were used to calculate the KL values". A more representative approach would have been to use a seasonal average for each season. DEQ does not use extreme limits for input values for any of the modeling parameters.

Response: Section 303(d) of the Clean Water Act and federal regulations at 40 CFR 130.7 both require TMDLs to account for critical conditions. Using a wind speed that is averaged over a month is not considered extreme, and is consistent with using the 90th percentile temperature and critical low flows.

9. <u>BOD Calculations:</u> Total BOD was calculated using a 20-day cycle. It is the general practice of LDEQ to use a 60 cycle.

Response: Resources were not available for 60 day BOD measurements.

Use of 20 day BOD data is widely accepted for TMDLs and is considered appropriate for these TMDLs.

10. <u>BOD Calculations:</u> The CBOD values calculated using the BOD Analysis spreadsheet were overestimated due to the fact that NO2+NO3 data values were not used. The resulting ultimate CBOD values were actually the total ultimate BOD values. At the same time, the nitrogen series was also being simulated. In effect, the nitrogen was expressed in two different parameters.

Response: The CBOD values were calculated from the spreadsheet using CBOD values measured in a lab with a nitrogen inhibitor present in the samples. Therefore, the BOD in the model was truly CBOD, and nitrogenous oxygen demand was simulated only through nitrification of ammonia.

11. <u>BOD Calculations:</u> Settling rates were not used in the model. The effect of settling on dissolved oxygen was simulated by SOD. This is not the general practice of LDEQ.

Response: No available information indicated the necessity for including settling rates for BOD. However, settling was simulated for algae.

12. <u>BOD Calculations:</u> Modified decay rates for CBOD were used rather than the bottle rates due to the fact that the samples "were seeded". This is not the general practice of LDEQ. However, average values may be used for reaches with similar water quality.

Response: The laboratory CBOD decay rates were adjusted within normal and reasonable ranges, which is a widely accepted practice for calibrating DO models.

13. <u>BOD Calculations:</u> Bottle decay rates were apparently not calculated for Organic Nitrogen. This is not the general practice of LDEQ.

Response: For most TMDLs, organic nitrogen decay rates are not determined from laboratory data. The use of a reasonable decay rate from published literature was considered appropriate for these TMDLs.

14. Vector Diagram: A vector diagram should be presented in the report.

Response: A vector diagram was not considered necessary because this model consists of one main stem (from Bayou Verret near Highway 90 to southeastern edge of Lake Cataouatche) with no branches.

15. <u>Critical Flows:</u> The first sentence of the second paragraph states that a 7Q10 values for Bayou Verret does not exist. A critical flow values should be calculated for Bayou Verret and the Louisiana Cypress Lumber Canal.

Response: Because no flow data are available for Bayou Verret and Louisiana Cypress Lumber Canal (and because they both have reversing flows), calculation of a 7Q10 flow is not possible. Additional simulations at different flow rates showed that using 0.1 cfs (0.003 m3/sec) made the modeling conservative.

16. <u>Calibration, Verification, Recalibration, and Projection Graphs:</u> Calibration, verification, and recalibration graphs for dissolved oxygen, CBODU, orthophosporus, and the nitrogen series should be presented in the body of the report.

Response: These graphs can be viewed in the Appendices. There are no requirements for placing graphs in the body of the report.

17. <u>Calibration, Verification, Recalibration, and Projection Graphs:</u> Projection graphs for dissolved oxygen should be presented in the body of the report.

Response: These graphs can be viewed in the Appendices. There are no requirements for placing graphs in the body of the report.

18. <u>Calibration, Verification, Recalibration, and Projection Graphs:</u> In general, the calibration and verification plots were not adequate.

Response: The comment does not explain why LDEQ considers the plots to be inadequate. EPA considers these plots to be adequate.

19. <u>Winter Projection:</u> A winter projection should have been performed. LDEQ issues permits based on seasonality.

Response: As discussed in Section 7.1 of the report, summer is the most critical season for meeting the year round standard for DO for this subsegment. Therefore, the summer simulation satisfies the seasonality requirements of the Clean Water Act. The available information for point source discharges indicated that the facilities discharging to this subsegment do not have seasonal permit limits. If any of these facilities wishes to pursue seasonal permit limits, then LDEQ or the permittee can re-run the model to develop seasonal wasteload allocations.

COMMENTS FROM THE GULF RESTORATION NETWORK (GRN):

1. <u>Lack of Implementation Plan and Reasonable Assurances:</u> There is no implementation plan described in these TMDLs at all. I was unable to find any indication of how the necessary reductions in nonpoint source pollution will be obtained. According to EPA guidance, waters impaired primarily by nonpoint sources require a description of its plan for reducing load allocations. Not only do these TMDLs not describe specific BMPs that will be used to achieve the prescribed manmade nonpoint source reductions, there is also no indication of a timeframe for implementation.

Response: Current federal regulations and guidance do not require TMDLs to include implementation plans. The TMDLs in this report do not include implementation plan components, such as descriptions of specific BMPs for reducing nonpoint source oxygen demand or timeframes for implementing BMPs. Although it is EPA's desire for implementation plans to be developed and carried out these TMDLs, time and money were not available to develop implementation plans.

2. <u>Lack of Implementation Plan and Reasonable Assurances:</u> According to EPA guidance, a TMDL can only rely on nonpoint source reductions if reasonable assurances that the nonpoint source load allocations will be achieved are provided. In these TMDLs, there are no reasonable assurances that the 75% nonpoint source reductions for Bayou Des Allemands and 60% nonpoint reductions reductions for Bayou Verret will be achieved.

Response: EPA guidance for TMDLs requires assurances of nonpoint source reductions ONLY when point sources are given less stringent WLAs based on assumptions that nonpoint source loads will actually be reduced. The point source discharges in this subsegment represented an insignificant fraction of the total oxygen demand and their WLAs were not contingent upon any reductions of nonpoint source loads.

COMMENTS FROM LOUISIANA STATE UNIVERSITY AGRICULTURAL CENTER:

1. The TMDL calls for a 60% reduction in the NPS loading of Bayou Verret. Since land uses in this Subsegment are 24.4% freshwater marsh, 30.1% wetland forest and 32.4% water, this level of attainment is unachievable. Only 5.5% of the land area is classified as urban and 5.5% classified as agricultural land use. There cannot be sufficient urban stormwater or agricultural discharge to accomplish any significant portion of the indicated reduction.

Response: In accordance with federal regulations, these TMDLs were developed based on allowable loadings to maintain the existing DO standard (5 mg/L). Specific ways to achieve necessary reductions in oxygen demand would be determined during development of an implementation plan, which is not required for TMDLs.

2. As indicated in the text, this subsegment contains the Davis Pond Freshwater Diversion from the Mississippi River designed to introduce fresh water, sediment and nutrients into this area of the marsh for restoration. The water in the diversion was not sampled nor was the flow determined, however, a TMDL was calculated on this subsegment. We feel that this assessment is incomplete.

Response: The flow from the Davis Pond Freshwater Diversion enters Lake Cataouatche as a distributed inflow rather than as a concentrated flow at a single location. Therefore, flow measurements were not possible for the inflow from the Davis Pond Freshwater Diversion. Because critical conditions for these TMDLs occurs with minimal inflow from the Davis Pond Freshwater Diversion, the lack of sampling and flow data for the diversion had little or no effect on the allowable loadings for the TMDLs.

3. The very high percentage of area in marsh, woodland and water support a determination that the water conditions are normal for the type landscape in this eco-zone and that no TMDL is needed here.

Response: Section 303(d) of the Clean Water Act requires that TMDLs be developed for all waterbodies not meeting existing water quality standards, regardless of land use. Even though this subsegment has high percentages of marsh and woodland, it is still affected by human alterations to the environment, particularly hydromodification (e.g., less inflow of Mississippi River water that is now controlled by levees, dredging of numerous canals and channels, etc.).

4. All of the data were placed in Appendices that were not attached to the TMDL document and are not readily available from EPA thus preventing any review of the conclusions reached or adjustments made. The Table of Sensitivity used in Model calibration could not be found.

Response: All appendices are available (in hard copy format) from EPA upon request. A sensitivity analysis has been added to the report.

5. We concur that the standard may not be achievable, therefore, we suggest that the standard be revised to reflect these conditions.

Response: As mentioned above, TMDLs must be developed based on existing standards. If LDEQ changes the standards for this subsegment, then these TMDLs can be revised accordingly.

COMMENTS FROM BARATARIA TERREBONNE NATIONAL ESTUARINE PROGRAM (BTNEP):

1. The Barataria-Terrebonne National Estuary Program (BTNEP) requests an extension of the comment period for the TMDL for Bayou des Allemands and Lake Cataouatche noticed in the December 1, 2004 Federal register (Volume 69, Number 230). This TMDL was prepared by a contractor for Region 6 EPA. BTNEP will require more time for a thorough review of these TMDLs and for preparation of comments. With the holidays of this month, a 30 day comment period is insufficient as many staff were out of the office. BTNEP would like to thoroughly review this draft of the TMDL. Therefore, we respectfully request that you extend the comment period for an additional 30 days through February 2, 2005.

BTNEP also requests that EPA Region 6 notify the plaintiffs in the TMDL lawsuit of the need to extend the comment period and to request an extension of the consent decree deadline for the completion of the Barataria Basin TMDLs

The BTNEP is very concerned about the potential impacts that TMDLs for nutrients and sediment may have on Louisiana's coastal restoration efforts. The BTNEP is intimately involved in coastal restoration efforts and represents a partnership of 42 public and private agency partners in the effort for coastal and estuarine restoration. Although we do not speak for each

agency partner, we have serious concerns about the effect that TMDLs may have on current and future coastal restoration efforts.

We are very concerned that if the TMDLs are enforced on the river diversion projects that are currently being designed to mimic the historical, natural freshwater inputs, they could limit the amount of Mississippi River water used for restoration in the Barataria Basin due to limitations on the sediment and nutrients in river water. The BTNEP Management Conference considers the re-establishment of natural riverine inputs to be one of our most valuable restoration tools. We believe that a significant limitation placed on our ability to divert reasonable amounts of Mississippi River water into the Barataria Basin for wetlands restoration purposes could seriously compromise our efforts

Response: Text has been added to the Executive Summary and to Section 8 of the report explaining that EPA believes that restoration of these coastal wetlands involves supplying nutrients through managed Mississippi River diversions. The added text also explains that the critical condition for these TMDLs was determined to be low flow (i.e., minimal inflow from diversions). Model results indicated that diversions of additional Mississippi River slightly improved DO concentrations in Lake Cataouatche. Therefore, these TMDLs are not intended to limit diversions of Mississippi River water for coastal restoration.